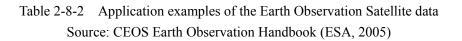
2-8. Disaster Analysis Based on Satellite Information


Many earth observation satellites, with various sensors, band-passes, observation bands, resolutions and observation cycles, are circling around the earth (see Table 2-6-1). Many satellite images are accessible by general public and looked forward to utilizations in disaster reduction activities such as the disaster analysis, forecast, etc (see Table 2-6-2).

Panchromatic						
Satellite name	Sensor name	Development organization (Country)	Launching	Service life	Spatial resolution	Purpose of use
EO-1	ALI (Pan)	NASA(USA)	2000	1 year	10m	Technical test/research
OrbView-3 & 4		Orbital Imaging (USA)	2000~2001	5 years	0.82m	Commercial purpose
QuickBird 2	-	EarthWatch (USA)	2001	5 years	0.82m	Commercial purpose
EROS-A1, A2		West Indian Space (USA & Israel)	2000. 2001	4 years	1.8m	Commercial purpose
NEMO	COIS (Pan)	NRL/DARPA/STDC (USA)	2001-	3-5 years	5m	Military & commercial purpose
IRS-P5 (CARTOSAT-1)	-	IRSO (India)	2001 —		2.5m	
EROS- B1? B6		West Indian Space (USA & Israel)	2002 - 2004	6 years	0.82m	Commercial purpose
ALOS	PRISM	NASDA (Japan)	2003	3-5 years	2.5m	
ROCSAT-2	-	NSPO (Taiwan)	2002			
SPOT 5	HRG (Pan)	CNES (France)	2002	5 years or over	2.5 & 5m (Pan)	Commercial purpose
KOMPSAT		KRI (Korea)	2003		-	
ARIES-1	- (Pan)	CSIRO (Australia)	2004 ?	5 years	10m	Commercial purpose
Hiyper-specter						
EO-1	Hyperion	NASA (USA)	2000	1 year	30m	Technical test/research
OrbView-4	WarFighter	USAF/Orbital Imaging (USA)	2001	3-5 years	8m	Military & commercial purpose
NEMO	COIS & PIC	NRL/DARPA/STDC (USA)	2001-	3-5 years	30m	Military
ARIES-1	- (Hyper)	CSIRO (Australia)	2004 ?	5 years	30m	Commercial, research purposes
Multi-specter high spa	tial resolution (< 10m)					
OrbView-3 & 4	-	Orbital Imaging (USA)	2001	5 years	4m	Commercial purpose
OuickBird 2		Earth Watch (USA)	2001	5 years	4m	Commercial purpose
	iate spatial resolution (<					
EO-1	ALI (Multi)	NASA (USA)	2000	1 year	30m	Technical test/research
CBERS-2	CCD Camera	CAST & INPE (China & Brazil)	2001	?	20m (VNIR) 80m (SWIR)	-
IRS-P6(ResourcSat)	LISS4	IRSO (India)	2001	-	6m	
IRS-P6(ResourcSat)	LISS3-A	IRSO (India)	2001	•	23.5m (VNIR) 70m (SWIR)	
ALOS	AVNIR-2	NASDA (Japan)	2003	3-5 years	10m	
SPOT 5	HRG (Multi)	CNES (France)	2002	5 years or over	10m (VNIR) 20m (SWIR)	Commercial purpose
Resource 21	<u>M10</u>	Resource21 (USA)	2003-2004	?	10m (VNIR) 20m (SWIR)	Commercial purpose
Multi-specter low spat	ial resolution (> 100m)	-				
AQUA	MODIS	NASA (USA)	2001	6 years	250m, 1000m	Research
CBERS-2	WFI	CAST & INPE (China & Brazil)	2001	?	260m	-
IRS-P6(ResourcSat)	AWIFS	IRSO (India)	2001		180m	
ENVISAT	MERIS	ESA (Europe)	2001	5 years	300m, 1200m	Research
ADEOS-II	GLI	NASDA (Japan)	2002	5 years	250m, 1000m	Research
SPOT 5	VEGETATION	CNES (France)	2002	5 years or over	1000m	Commercial purpose
Synthetic aperture rada	ar					
ENVISAT	ASAR (C-Band)	ESA (Europe)	2001	5 years	12.5m-1000m	Research
ALOS	PALSAR (L-Band)	NASDA/JAROS (Japan)	2002	3-5 years	10,20m or 100m	
Radar-1	SAR	RDL (USA)	2002-	?	lm	Commercial purpose
RADARSAT-2	Multi Pol SAR (C-Band)	CSA/MDA (Canada)	2003	7 years	3-100m	Commercial purpose
TerraSAR	SAR (X. L-Band)	InfoTerra (Europe)	2003	?	1m	Commercial purpose
IRS-3	SAR	IRSO (India)	2003 ?	?	?	

Table 2-8-1 List of earth observation satellites (2000 —)

Table 2-8-1List of earth observation satellites in recent yearsSource: Earth Observation from Space (ERSDAC, 2001)

Hazard	Use of EO satellites			
Hurricanes & tornadoes	Weather satellites are used extensively for detection and tracking of storms and contribute effectively to the forecasting capability. Recent satellite missions providing more detailed and frequent measurements of sea surface wind speed and tropical rainfall mapping have significantly improved forecasts.			
Volcanic eruptions & earthquakes	In-situ systems and Global Positioning System (GPS) satellites provide valuable information on seismic and volcanic activity. EO satellites provide complementary data in support of disaster mitigation and response; interferometry techniques of radar sensors are used to monitor fault motions and strain, and signs of Earth surface deformation and topographic changes. Very high resolution sensors are used to map damage assessment, direct response efforts, and aid reconstruction planning. Satellite data is the primary information source employed by the g Volcanic			
	Ash Advisory Centres operational world-wide which issue volcanic ash clou warnings, an essential information source for international aviation safety.			
Wildfires	A number of satellites now contribute routinely to each stage of wildfire hazard management world-wide, including: fire risk mapping using land cover and fire fuel assessments, moisture data, digital elevation maps, and meteorological information – all derived from satellite; fire detection and early warning; fire monitoring and mapping; burned area assessment.			
Oil spills	Synthetic Aperture Radar (SAR) data is used as the basis for ocean surveillance systems for oil slick detection, to provide enforcement and monitoring capabilities to deter pollution dumping. The SAR data is processed within 1-2 hours of the satellite overpass and used by pollution control authorities to cue aircraft surveillance. Surveillance systems are currently operational in Norway, and Denmark, and under trial in the Netherlands, Germany, and the UK.			
	SAR data and optical data are also used to develop information in support of major coastal oil spills, to assist in mapping pollution extent and managing the response.			
Drought	Currently, multichannel and multi-sensor data sources from geostationary satellites and polar orbiting satellites are used routionely for determining key monitoring parameters such as: precipitation intensity, amount, and coverage, atmospheric moisture and winds. Instruments with spectral banc capable of measuring vegetative biomass are also used operationally for drought monitoring. The Famine Early Warning System (FEWS) in Africa, for example, exploits operational use of satellite technology to reduce the incidence of famine in sub-Saharan Africa by monitoring the agricultural growing season. Monitoring is carried out through "greenness maps" derived every to days from the AVHRR instrument, and from rainfall estimates.			
Floods	Earth observation satellites are used for the development of flood impact prediction maps, contributing measurements of landscape topography, lan- use, and surface wetness for use in hydrological models. Weather satellites provide key information on rainfall predictions to assist flood event forecasting. Since optical observations are hampered by the presence of clouds, SAR missions (which can achieve regular observation of the earth's surface, even in the presence of thick cloud cover) are frequently used to provide near real-time data acquisitions in support of flood extent mappin			

In this country, take for example, the disaster reducing working group of the satellite remote sensing steering committee¹ disclosed to public² in 2000 the "Introduction to the disaster analysis methods that utilize satellite information" which summarizes analysis examples of satellite data applied to actual disasters and interprets the disaster analysis methods, in order to introduce extensively the methods of utilizing the satellite remote sensing technology to persons in charge of the administration of disaster reduction at local public bodies and general public. Further, the committee opened to public³ in 2006 the "Results of forerunning analysis based on ALOS observation data", taking the opportunity when a long-waited start of operation of the Japanese earth observation satellite "Daichi (Good Earth)" (ALOS).

The "Introduction to the disaster analysis methods that utilize earth observation satellite information" provides useful information for persons in charge of administration of disaster reduction as well as for researchers in Asia. In order to assist the promotion of disaster reduction measures at member countries, Asia Disaster Reduction Center obtained the right to print and disclose the English version, and opened⁴ it public.

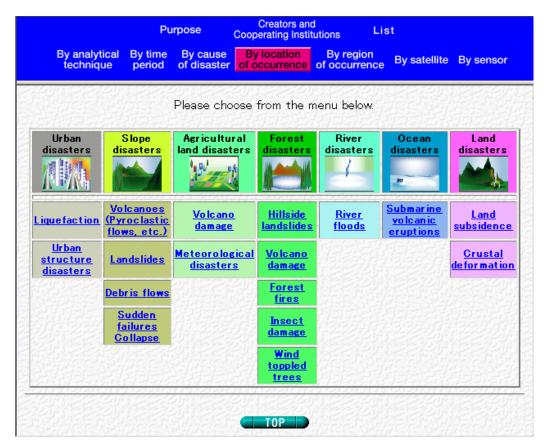


Fig.2-8-3 Examples of analysis based on places of occurrence

¹ Organization provided in the Remote Sensing Technology Center Foundation to carry out specialized research and examination used for planning, designing and coordinating steering measures related to the research, development and examination of remote sensor technology and satellite systems as well as the dissemination and utilization of satellite data.

- ² http://www.restec.or.jp/eeoc/bosai/bousai/v11.htm
- ³ http://www.restec.or.jp/eeoc/alos/bosai/bosai.htm
- ⁴ http://www.adrc.or.jp/dmweb/index.html

Moreover, it is examining, jointly with Japan Aerospace Exploration Agency (JAXA), National Institute of Information and Communications Technology (NICT) and Diamond Air Service (DAS), new early access to disaster information and means of sharing information which utilize, among others, Wideband InterNetworking engineering test and Demonstration Satellite (WINDS), a new communication satellite being planned to launch in 2007 by JAXA. (Fig. 2-6-4)

Fig.2-8-4 Disaster information system that utilizes Wideband InterNetworking engineering test and Demonstration Satellite (WINDS)