PREPAREDNESS TO EARTHQUAKE AFTER THE CATASTROPHE OF AUGUST 17TH

Asian Conference on Disaster Reduction 2019 Ankara, Turkey, 25-27 November 2019

STRATEGIC PLAN by AFAD-DISASTER AND EMERGENCY MANAGEMENT PRESIDENCY

One should consider preventive and protective measures before disaster hits. It is futile to lament after the disaster hits.

Gazi Mustafa Kemal ATATÜRK Founder of Turkish Republic

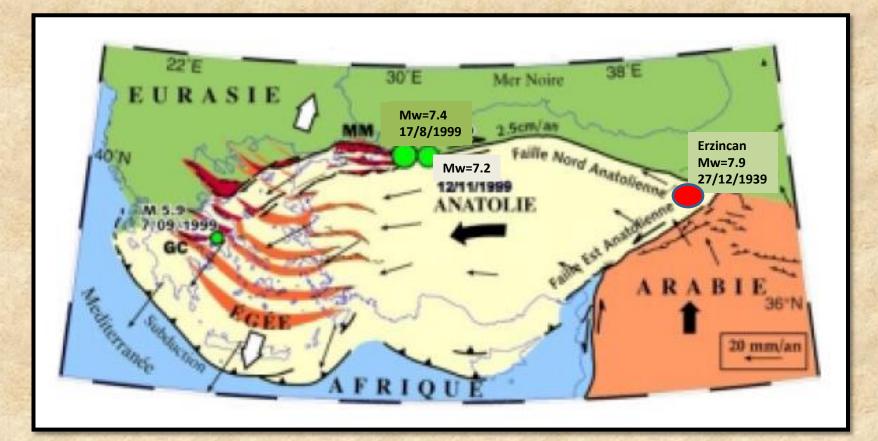
S. anatu

• Turkey is located on a high-risk geography that is heavily affected from disasters due to its geological structure, topography and climatic characteristics.

STRATEGIC PLAN by AFAD (DISASTER AND EMERGENCY MANAGEMENT PRESIDENCY)

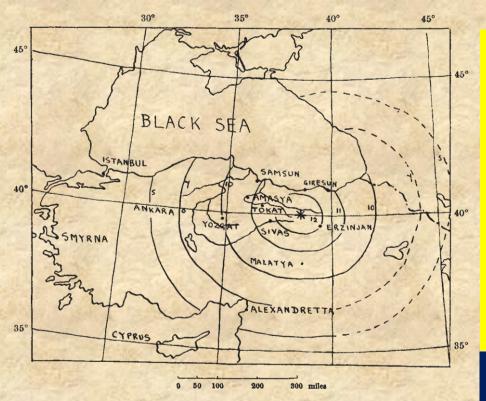
The fundamental philosophy of the National Earthquake Strategy and Action Plan-2023 (NESAP-2023) has been summarized as <u>achievement of new earthquake-resilient</u>, <u>safe</u>, <u>well</u> <u>prepared and sustainable settlements</u>.

•The document aims to reduce the earthquake risk and enable a society that is prepared against this form of hazard through examining the institutional framework for this objective and establish the priorities of the R&D programs on the subject.


Because of these reason that the physical, economic, social, environmental and political harms and losses that may be engendered by earthquakes are prevented or their effects reduced.

•We have to make our strategic policies and be prepared for the unexpected based on the foresight that the global climate change and instability may cause disasters and emergencies at unexpected dimensions.

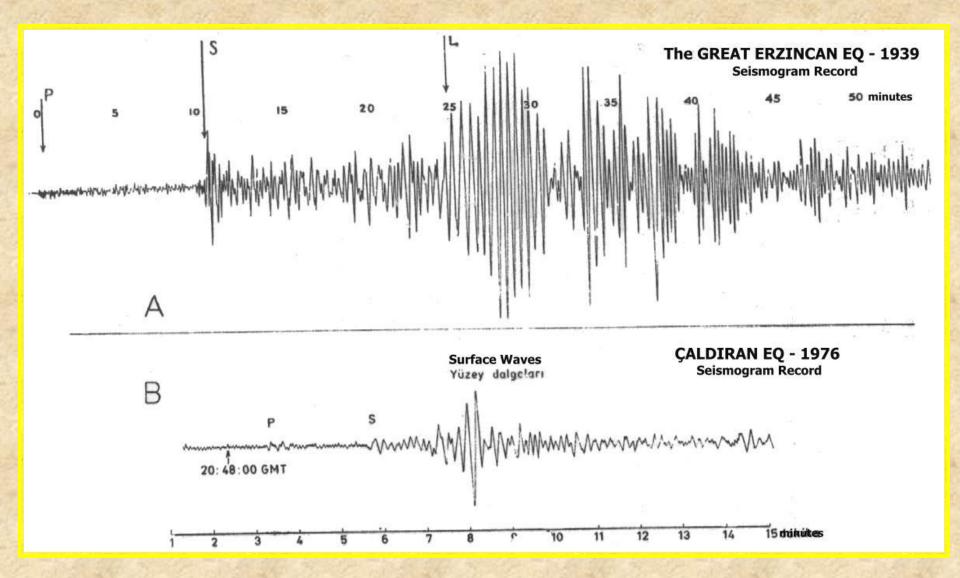
MAIN TOPICS


- Turkey's Seismicity and Studies
- August 17th Earthquake Effects-Damages
- New Settlements, New Constructions
- Retrofitting Damaged and/or Undamaged Buildings
- Retrofitting Viaducts, Suspension Bridges
- The Roles of IISEE, Contributions of Japanese Professors and Promotion of Earthquake Engineering in Turkey
- Challenging Projects-Suspension Bridges ,The Marmaray

KOCAELİ (August 17th) - DÜZCE (November 12th) 1999 EARTHQUAKES in TURKEY

Tectonic Structure of Turkey and Neighboring Area

ERZÍNCAN EARTHQUAKE (M_s=7.9) December 27, 1939


SKETCH MAP SHOWING THE APPROXIMATE EPICENTRE AND ISOSEISMAL LINES (MODIFIED MERCALLI SCALE OF 1931) OF THE ERZINJAN EARTH-QUAKE OF DECEMBER 27, 1939.

*, EPICENTRE ; <u>10</u>, ISOSEISMAL LINE.

(NATURE- No. 3662 Jan. 6,1940 p.13)y E.TILLOTSON

Between 1900 and 1999, 149 damaging earthquakes occurred in our country and 578544 (~ Half Million) buildings were destroyed or severely damaged.
In these earthquakes, resulting in a total loss of 97203 (~ 100 Thousand) lives.

Epicenter & Isoseismal Lines (Modified Mercalli Scale of 1931) Fault Length: L=350km h=20km

December 27, 1939 Great Erzincan Earthquake – Record: Harvard University, USA November 24, 1976 Çaldıran Earthquake – Record: İstanbul Technical University, TR

Some Earthquakes Occured on Alpin–Himalayan Belt in Turkey

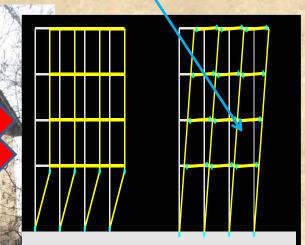
Earthquake	Year	Magnitud	Intensity	HumanLost
Düzce	1999	M _s =7.2	MKS=X	850
Kocaeli(Marmara)	1999	M _s =7.4	MKS=X	17479
Erzincan	1992	$M_{s} = 6.8(*SI{2})$	MKS=VIII	1086
Ceyhan	1998	M _s =5.9	MKS=VIII	145
Dinar	1995	M _s =5.9	MKS=VIII	94
Adapazarı	1967	M _s =7.5	MKS=IX	89
Bolu-Abant	1957	M _s =7.1	MKS=IX	25
Yenice -Gönen	1953	M _s =7.5	MKS=IX	265
Bolu-Gerede	1944	$M_{s} = 7.4$	MKS=IX	3959
Adapazarı-Hendek	1943	$M_{s} = 6.1$	MKS=IX	336
Büyük Erzincan	1939	M _s =7.9	MKS=X~X1	32962

Total or Partial Collapses Should be Prevented

dapazarı, 1999

Adapazarı, 1999

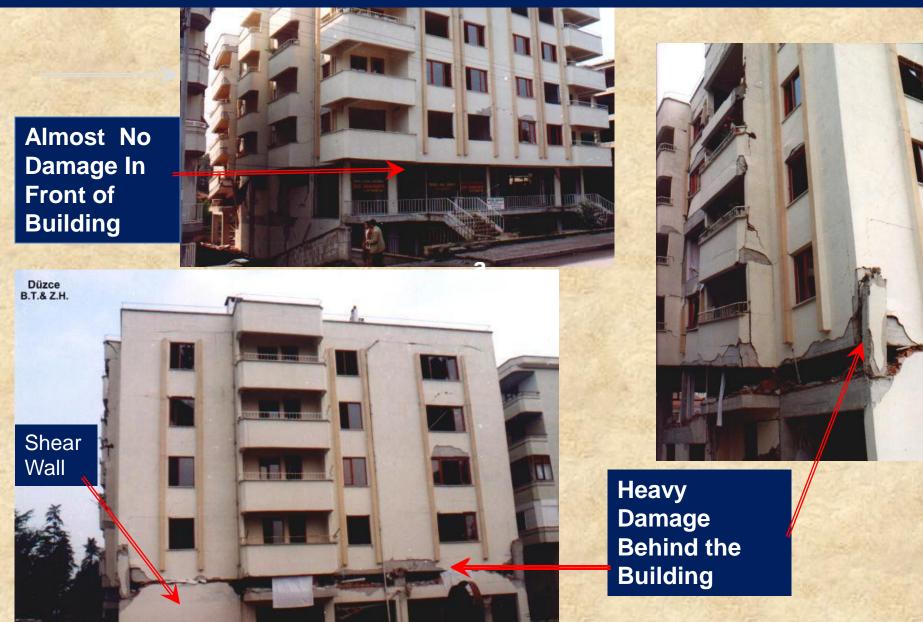
Turkish NGO's have emerged in both earthquakes in the Marmara region and made a significant contribution. They worked in coordination with international organizations.


August 17th, 1999 Kocaeli Earthquake, Adapazarı Prefecture

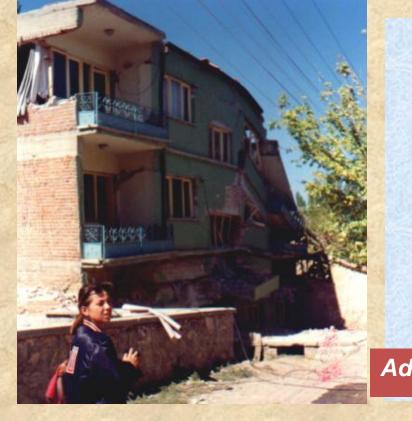
DUCT1LE BEHAV1OUR & ABSORPT1ON OF ENERGY DUR1NG THE EARTHQUAKE W1TH BEAM-MECHANISM IN THE STRUCTURE

DSİ Van Regional Directorate Building: Column-Mechanism in the Ground Floor

<u>"ductile behavior"</u> with their elements


Mechanism in
columnsMechanism in
beamsVan Earthquake 2017 M_w=7.2

Causes Increasing the Risk of Damage in Earthquakes


- <u>The absence of a strict inspection system</u> <u>at the time of their construction</u>
- Local ground conditions are not realistically taken into account during the design phase
- Low concrete strength of the structure;
- <u>The confinement reinforcement</u> at the beam and column ends is not sufficient;
- Beam-column combination without stirrup;
- The stirrup hooks are bent at an angle of 90°
- If there are bearing system irregularities in plan and vertical direction;

Bearing system irregularities in plan and vertical direction

Contrary to Regulations or Code

Especially for Masonary Structures Irregular & Big Openings Adana 1998

The second point is prevention of further damage and injury from buildings that collapse in the aftershocks of a major quake.
A system of rapid inspections by qualified inspectors to determine whether damaged buildings are safe to move back into is needed.

Design of Buildings as Earthquake Resistant Structures Main Philosophy

 According to the survey results in the case of a 7-magnitude earthquake in Turkey and Japan, the structural damage to our country 30 times, the loss of life was found to be 15 times, more than that in Japan.

•Economic statistics for the last sixty years show that direct and indirect economic losses engendered by natural disasters account for 3 percent of the country's GDP. The forecasts tell us that in a major earthquake in a major city this ratio may well be double.

•We need to take lessons from recent earthquakes in order to reduce loss of life and destruction. We have to understand and apply the science and the content of the earthquake regulations based on these experiences as well.

Measures to Prevent Secondary Disasters After the Quake

One of the important points to prevent secondary disasters is fire fighting.

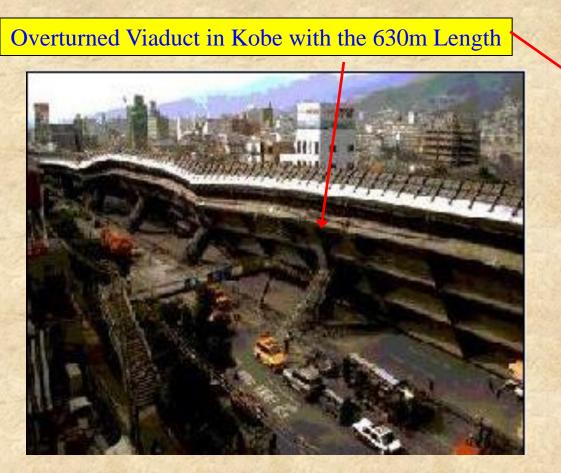
In the Kobe disaster, water mains were broken and fire hydrants damaged. Without water, it took two full days for the fires to be completely extinguished. Consequently, the development of an earthquake-resistant water supply infrastructure is urgently needed.

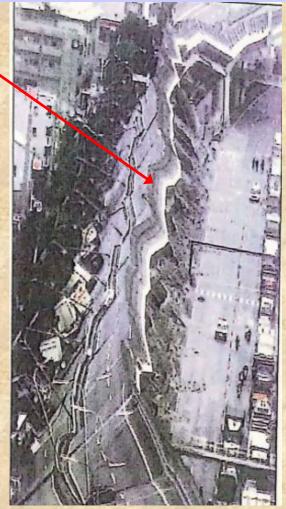
Kobe, 17 Ocak 1995, 5:46

INDUSTRIAL FIRES

(1999 Kocaeli Earthquake, Turkey)

 First, a 90 m high and 10 m diameter reinforced concrete chimney in the crude oil unit fell into the middle of the units, causing a fire.


The second one, unlike the crude oil unit, was caused by sparks in Nafta tanks.


TÜPRAŞ Refinery Fire

 These fires could only be controlled within three days.

Great Hanshin Earthquake Effect in Kobe Viaducts, 1995

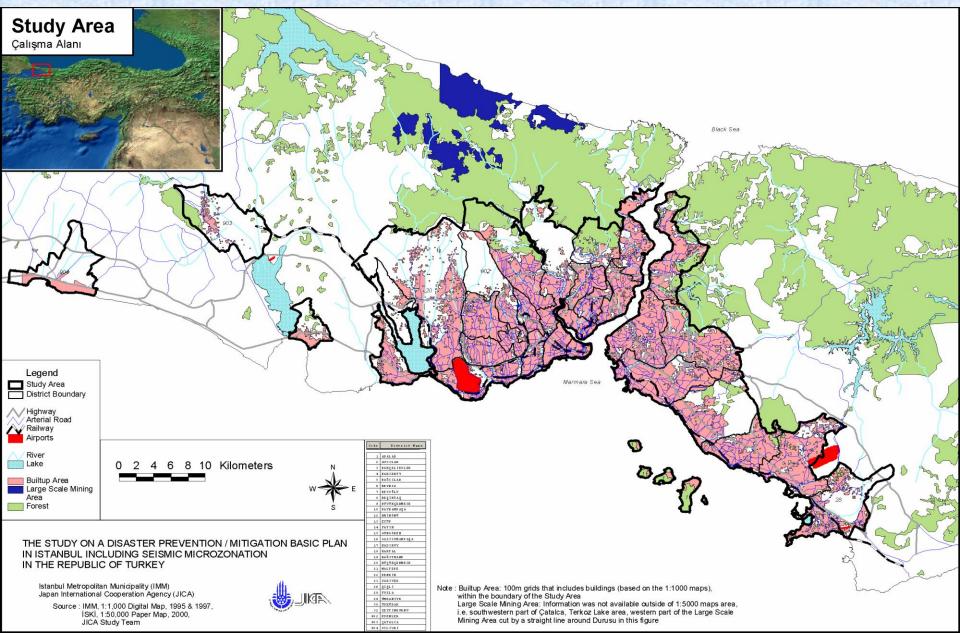
Even though Japan has the strictest Seismic Design Codes in the World, Great Hanshin Earthquake caused greater damage than had been anticipated.

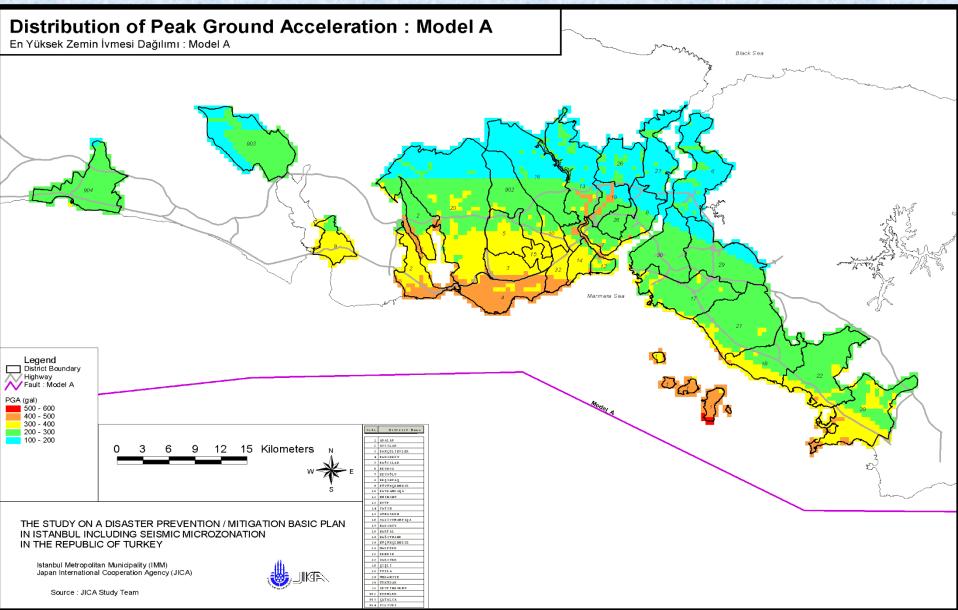
Bridge & Railway Damages

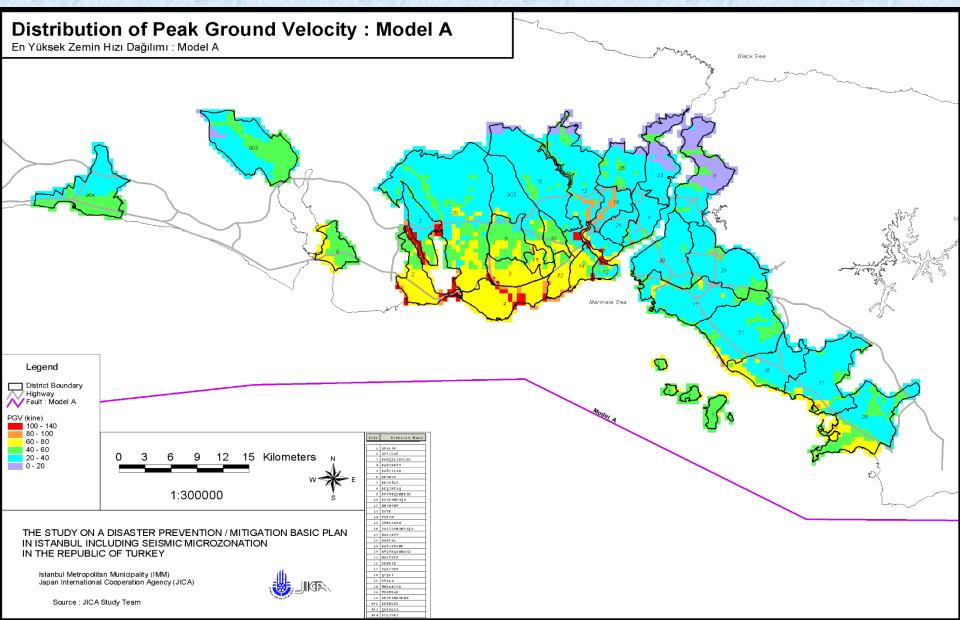


Collapses of TEM Highway, Arifiye Grade Separation in Kocaeli Earthquake

Previous Earthquakes & Structural Damages


Extreme amount of ground displacements


Fault Movements


SEISMIC MACROZONATION STUDIES BY JICA & ISTANBUL MUNICIPALTY ADMINISTRATION FOR EXPECTED EARTHQUAKE

PREPAREDNESS for an EXPECTED EARTHQUAKE in ISTANBUL

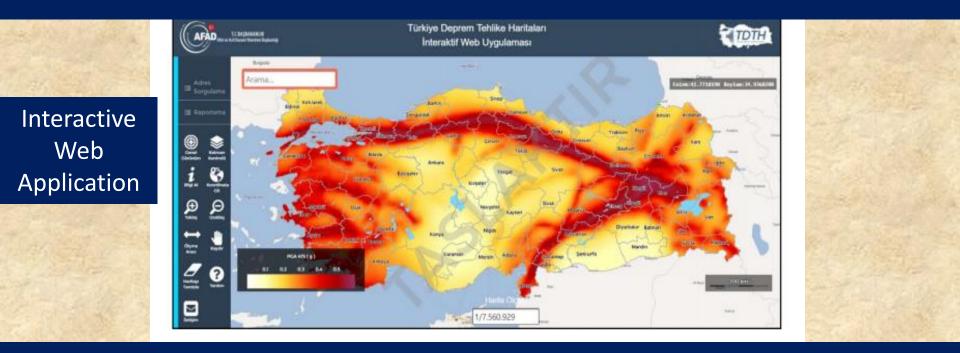
PREPAREDNESS for an EXPECTED EARTHQUAKE in ISTANBUL

Distribution of IGDAŞ Discrete Regulators in İstanbul

Valves that can instantly shut off the gas on the natural gas network are installed by gas companies. The gas is automatically cut off in vibrations at the base stations.

İGDAŞ Regulators

IGDAŞ Regulators with Strong Ground Motion Stations (to shut off the valves in regional regulators when the threshold ground motion parameters values exceeded)


Great Hanshin Earthquake Effect in Kobe

The number of accelerometer stations operated by our Agency is 757, as of October 2019. Immediately after a damaging earthquake, the structural damage and loss of life that may occur in the earthquake zone is estimated before the information is received yet.

NEW TURKISH BUILDING SEISMIC DESIGN CODE (2019)

https://tdth.afad.gov.tr/main.xhtml

It is planned to present "Earthquake Hazard Maps of Turkey", which are also developed consistent with "Turkish Building Earthquake Code".
Earthquake hazard maps in terms of peak ground acceleration, peak ground velocity, 5%-damped pseudo-spectral accelerations at 0.2 sec and 1.0 sec periods for return periods of 43, 72, 475 and 2475 years (68%, 50%, 10%, 2% probability of exceedance in 50 years, respectively)

NEW TURKISH BUILDING SEISMIC DESIGN CODE (2019)

Turkish Building Earthquake Code-2019

Scope

Steel Reinforced Concrete Buildings Design of new buildings 0 Buildings Concrete Assessment of existing buildings 0 Light weight Masonry Strengthening of Existing buildings 0 steel Buildings buildings Wooden Tall Isolated buildings Buildings Buildings

Reinforced

Prefabricated

Legislative Preparedness for Future

•Construction Supervision-Professional qualification of the inspection engineer should be made.

•Refinement of Earthquake Resistant Design Procedure (Revised Code)

Found of Compulsory
 Earthquake Insurance
 (DASK) is Established by
 Law- September 2000

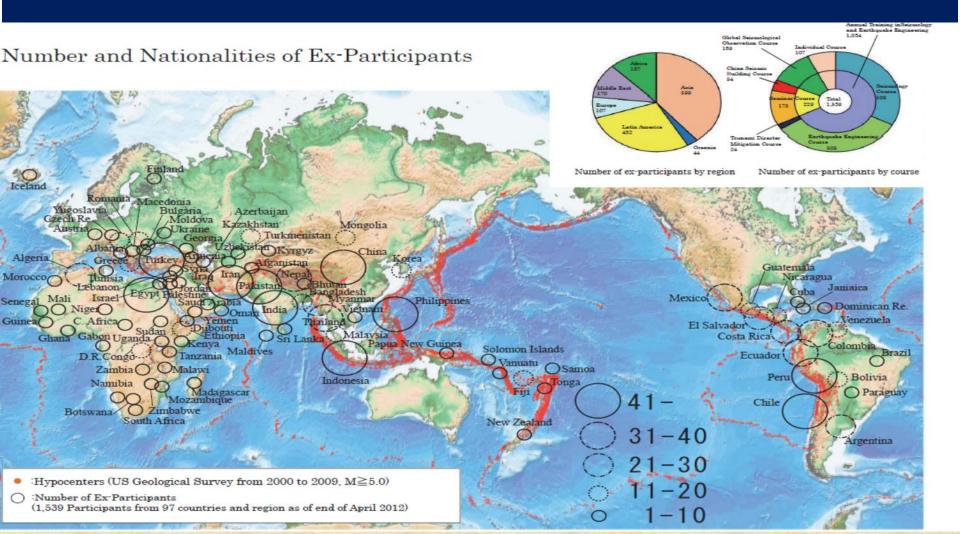
The Main and Unique Objective of Scientists is to Reduce the Sorrow of Humanity - Bertold Brecht

Training Programs for Engineers & Earthquake Drills for NGO

 Training Programs & Drills Incorporated with The Civil Defence & Fire Brigades Organized by The Directorate of Emergency Rescue Services
 It Also Targets Training Volunteers & Certifies Their Accomplishments

 Training Programs for Damaged Structures Carried Out For Engineers Continuously by The Turkish Civil Engineering Chamber

 Earthquake Drill Organized by Istanbul Metropolitan Municipality (IMM)


 Emergency Rescue Training for High School and University Students as well as Ordinary Citizens.

RETROFITTING WORKS for SCHOOL BUILDINGS in ISTANBUL just After August 17th 1999

ALL THE ALL THE ALL THE ALL THE ALL THE		
Total Number of Schools	2364	
Total Number of Blocks	2672	
Planned for Retrofitting	1783 Number of Blocks	
Completed Projects	478 Number of Blocks	
Decided for Demolishing	54 Number of Blocks	
Completed Retrofitting	72 Number of Blocks	
Newly Constructed	41 Number of Blocks	

THE ROLE OF IISEE

•IISEE-Total:1960 to April 2012 : 1,539 (Turkey: <u>Seismology : 31 -Erthquake Eng.: 23</u>) +Countries : 97 (1970-2012 JICA) (Individual (S): 4 (E): 9+Seminar+Global:14;Total: 81

The Pioneers Japanese Academicians, on Visiting at İstanbul Technical University

Prof.Dr. Umemura with Dr. M. Ipek who was his assistant and translator of his book, 1991)

Engineering Seismology lecture notes are organized and the book was printed in Turkish in 1963 Prof. Dr. Takahiro Hagiwara In front of Taşkışla; Central Historical Building of ITU

He gave the first 'Seismology' course in Istanbul Technical University between the years of 1953 – 1955 assisted by Dr. Silva Büyükaşıkoğlu

The Pioneers Japanese Academicians, on Visiting at İstanbul Technical University

- Prof. Dr. Shun'ichiro Omote specialist (later he became first director of IISE in Tokyo) for Seismology came to Turkey in the 1957
 - Prof. Dr. Tsuneji Rikitake has lived
 in Turkey, İstanbul for more than
 one year(1975) and has visited our
 country several times.

On behalf of the Faculty of Civil Engineering of the Technical University of Istanbul, the Dean of the Faculty presents this certificate of honour to

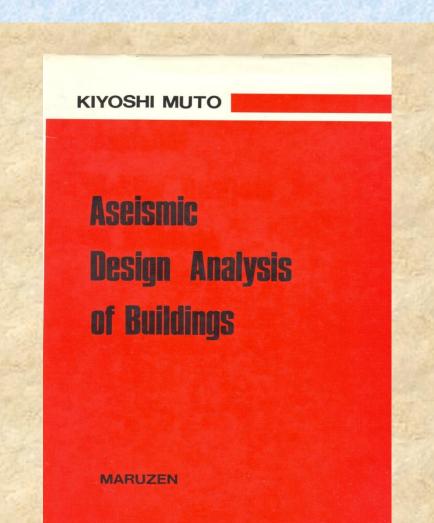
Prof. Dr. T. RIKITAKE

for his valuable and faithful contributions to the foundation of Engineering Seismology and Earthquake Engineering in Turkey


23.9.1975 Istanbul A. L.J.L. L. Professor Talât Müftüoglu Dean

Prof. Dr. Omote with Prof. Dr. M. İpek (November 1991)

Prof. Dr. Keizaburo KUBO, Devoted His Life to the Earthquake Resistant Design of Lifeline Structures



The Pioneers Japanese Academicians, on Visiting at İstanbul Technical University

Photo 4. Professors 'Yarar and Muto at Muto's office in Tokyo (July, 1977)

"D Method" was introduced to the world by an article presented to the 1956 Earthquake Engineering World Conference by Kiyoshi Muto, a professor at Tokyo University.

Contributions of Japanese Professors Promotion of Earthquake Engineering in Turkey

At Erzurum Airport - April-1992 on the way of Erzincan Prof. Dr. Masanori HAMADA- JSCE 2006 President (Doctoral Student of Prof. KUBO)

After 17th August Marmara Earthquake, Prof.
 Hamada Organized Japanese Academician Group for
 Earthquake Site Investigation as He Had Come to
 Turkey with Prof. Ömer Aydan after 1992 Erzincan
 Earthquake.

He always supported to develop Turkish and Japan
 Civil Engineering relationship.

•After the 2011 Great East Japan Disaster (GEJE), he criticized the situation: "The Origin of the GEJE and tsunami disaster was the unrepairable failure of earthquake and tsunami prediction. The sours energy of the earthquake was 180 times larger than of the prediction one."

Establishment of ITU Structural and Earthquake Engineering Laboratory is Supported by Prof. Yarar & Prof.Kubo

JICA organizes courses to teach Earthquake Engineering and Disaster Management in ITU. Pseudo dynamic experiments for model structurall elements is being carried out.

3rd Country Training Programs led by ITU were performed in the years of 2014; 2015 and 2016

Each of them usually has 13-15 participants from the Central Asia and neighboring countries Albania, Azerbaijan, Georgia, Kazakhstan, Moldova, Tajikistan, Turkmenistan, and Uzbekistan. Lecturer were from the different establishments such as ITU, JICA, AFAD and TIKA.

The program contents in these courses are mainly cover:

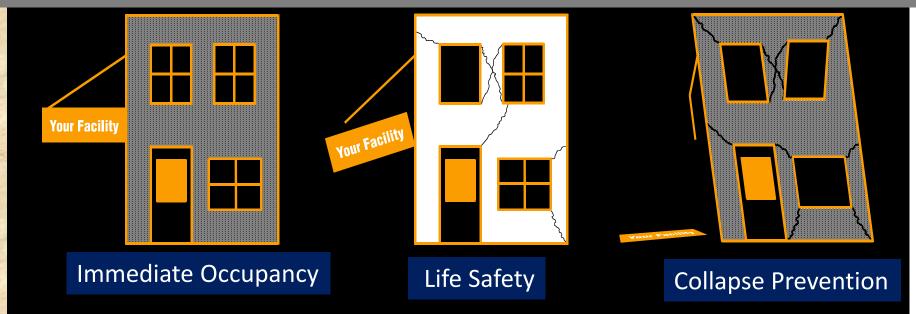
 Earthquake Engineering, Damages, Seismology, Risk Based Approach to Flood in Turkey, National Strong Motion Observation Systems of Turkey, Experimental Works on Earthquake Engineering, Remediation methods against liquefaction, Soil Dynamics

ITU – JSCE THE JOINT SYMPOSIUMS

The 2nd JOINT SYMPOSIUM

The 3rd JOINT SYMPOSIUM

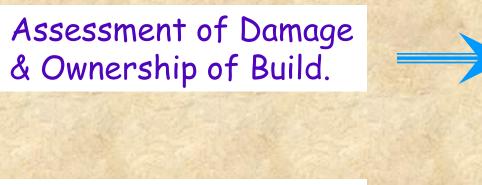
Restructuring and Binding Up Wounds


121 Temporary Emergency Shelters Established in Disaster Area in Two Months 12 Thousand Tents - (Field kitchens provided hot food to 200 thousand people)

Engineering for Earthquakes

Design Considerations

Performance objectives



Seismic Isolation Example - Turkey

The use of seismic isolators in new hospitals is made compulsory.

Faculty of Medicine Hospital -Kocaeli University

The Main Plan after August 17 Kocaeli & November 12, 1999 Düzce Earthquakes

Completing the **Temporary Structure** (26 Thousand)

Completing Permanent Build.(23 Thousand)

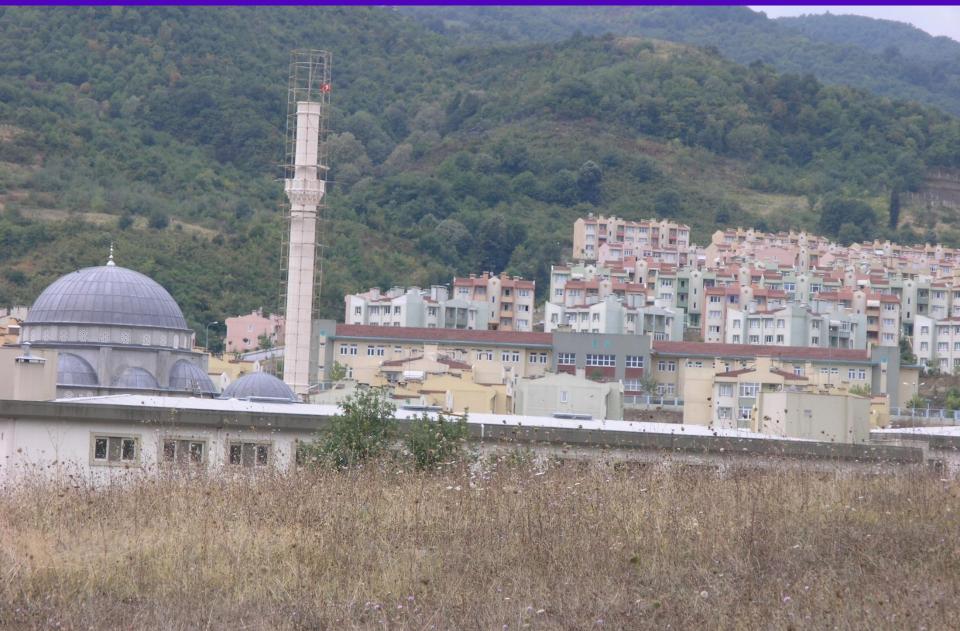
December 2000

1999

In a short time

New Settlement Near Hereke- KOCAELİ Province -Project with the World Bank Credit

Reconstructed Buildings in Hereke

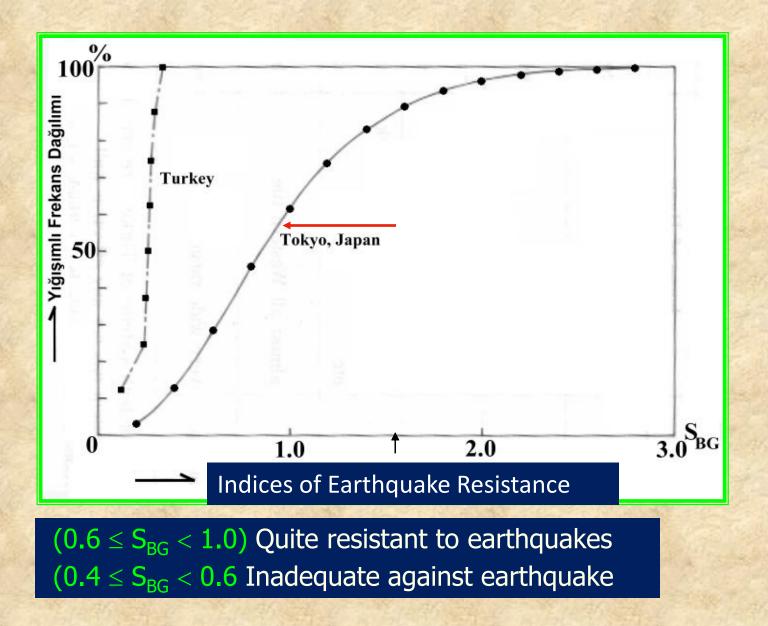

Restructuring & Settlement Areas in ADAPAZARI Province

Social Facilities (Primary School) - New Settlement -Gölcük-Town

New Settlement Area in Kocaeli Province

Reconstructed Buildings – Gölcük Town

S_{BG} Indexes-Classical Retrofitting

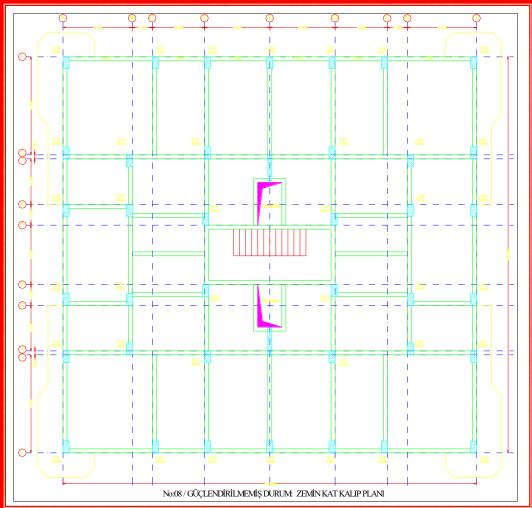

After the Miyagiken-Oki earthquake in 1978, a total of 362 buildings, 90 of which were apartment buildings, were subjected to earthquake resistance surveys in 1982 and SBG coefficients given by the Institute of Architecture of Japan (*AIJ*) were determined empirically.

Earthquake resistance indexes were calculated for the framed structures in 1983, by Mochizuki, T. and Goto, N. in the region on the North Anatolian Fault:

 \Rightarrow S_{BG} = 0.25~0.37

Before retrofitting when the S_{BG} indices were examined considering the variability in the compressive strength of 11 buildings in Yalova prefecture obtained as follows: $\Rightarrow S_{BG} = 0.07 \sim 0.22$ After the Kocaeli Earthquake 1999

S_{BG} Indices(Mochuzuki, T.and Goto, N.1983

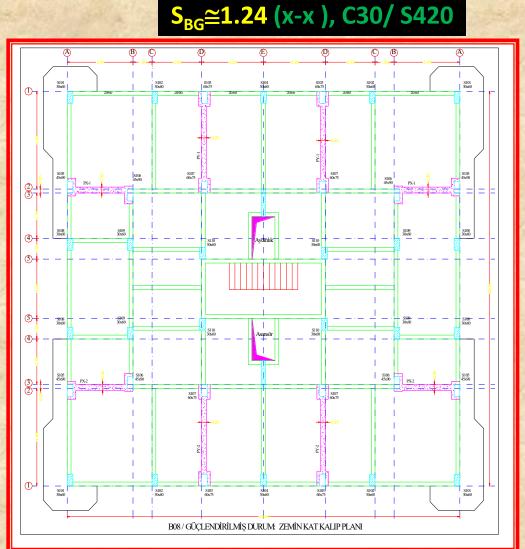


Investigations of S_{BG} Indexes-(in 2000-Yalova Prefecture)

Building			Before Retrofitting			After Retrofitting		
No	Floor	σ (MPa)	Concre Class	e <u>te</u> in X	S _{BG} in Y	Concre Class	ete S inX	^{BG} <u>in</u> Y
B 01	6	3.943	C12	0.11	0.14	C20	0.85	1.20
B02	6	3.453	C12	0.13	0.22	C20	1.31	1.93
B03	5	4.498	C12	0.24	0.07	C20	2.02	0.90
B04	4	2.719	C12	0.17	0.20	C20	1.05	1.62
B05	3	2.532	C10	0.09	0.15	C20	1.35	2.18
B06	3	2.763	C10	0.21	0.20	C20	2.07	2.02
B07	6	4.061	C13	0.08	0.14	C20	0.56	0.79
B08	6	4.120	C08	0.08	0.10	C30	1.24	1.12
B09	5	4.012	C18	0.16	0.18	C25	1.27	1.06
B10	4	3.984	C10	0.13	0.13	C20	1.22	1.21

EXAMPLE- RC BUILDING -B08 in YALOVA PROVINCE

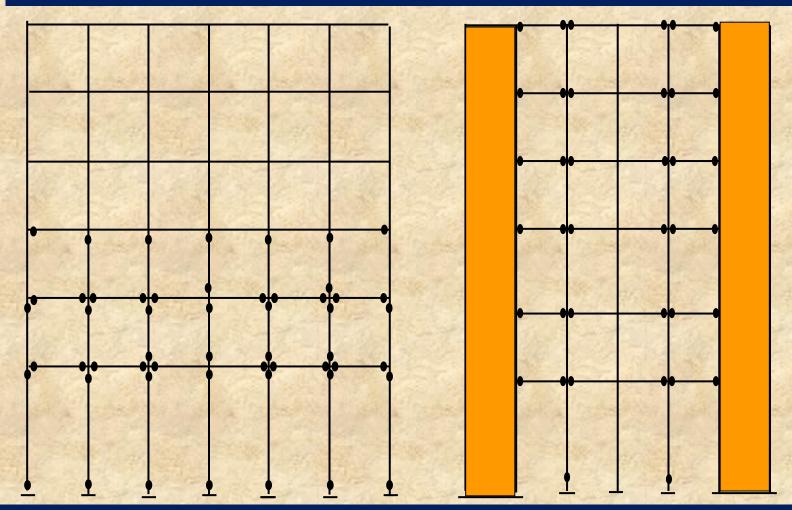
BEARING SYSTEM BEFORE RETROFITTING


17.08.1999 KOCAELI EARTHQUAKE B08:6 FLOORS MODERATE DAMAGE FRAMED STRUCTURE Material Strength: C8-S220) R=4.0 S_{BG}≅0.08(x-x doğrultusu), $T_{(x-x),1} = 0.85$

EXAMPLE- R-C BUILDING -B08

INCREASING BEARING CAPACITY of RC BUILDING (B08)

(AFTER RETROFITTING)


•Totally 8 RC shear walls were added.

 Columns were placed at the both ends of the walls.

 New columns were added just below the stud beams corresponding to the ends of the added walls.

•Only for the ground floor, all old columns are jacketed due to the provision of load transfer to the foundation and corrosion effects.

Plastic Hinges Distribution in 2-2 Axes

Before Retrofitting

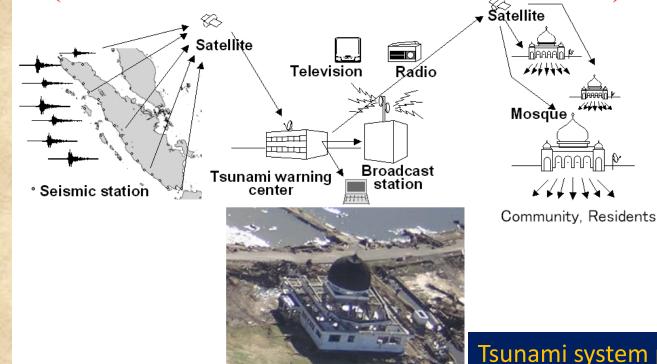
After Retrofitting

Nonlinear Time Domain Analysis Solutions for the Sample Building, under the Sakarya-EW 1999 Acceleration Record.

Measures Against Ground Shaking & Tsunami in Japan

The exist retrofit ground should terraces vertical vulnera

The existing buildings must be retrofitted against strong ground shaking and they should be equipped with terraces and stairs for the vertical evacuation in tsunamivulnerable areas Prof.Ömer Aydan


Strengthening Tokai University Shimizu Campus -Steel Trusses

Recommendations for measures against Tsunami

Plan for Regional Tsunami Warning System by JSCE

(For North Sumatra Provincial Government)

Tsunami system proposed by Prof. M. Hamada for Sumatra

Japanese Tsunami Warning System

Vertical Evacuation (Retrofitted RC Buildings with Terraces on top)

Education of people – KOGAMI

World Ranking of Suspension Bridges to Their Interior Spans

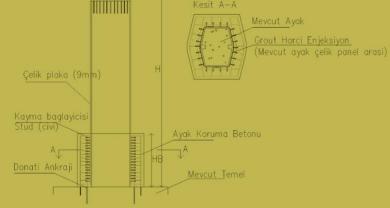
	Bridge Name	Country	Interior Span	Completion Year
1	Akashi Kaikyo	Japan	1991 m	1998
2	Xihoumen	China	1650 m	2009
3	Great Belt East	Denmark	1624 m	1998
4	Osman Gazi	Turkey	1550 m	2017
5	Yi Sun-sin	Korea	1545 m	2012
6	Runyang	China	1490 m	2005
7	Nanjing Fourth Yangtze	China	1418 m	2012
8	Humber	England	1410 m	Ranked first between 1981 - 1998
9	Jiangyin Yangtze	China	1385 m	1999
10	Tsing Ma	Hong Kong	1377 m	1997
11	Verrazano Narrows	USA	1298 m	1964
12	Golden Gate	USA	1280 m	1937
13	Yangluo	China	1280 m	2007
14	Högakustenbron	Sweden	1210 m	1997
15	Mackinak Straits	USA	1158 m	1957
16	Aizhai	China	1146 m	2012
17	Huangpu	China	1108 m	2008
18	Minami Bisan- Seto	Japan	1100 m	1988
19	Fatih Sultan Mehmet	Turkey	1090 m	1988

After Retrofitting BOSPHOROUS SUSPENSION BRIDGE-(1973) L=1.560KM

Oldest Suspension Bridge Closest to North Anatolian Fault

Important Maintenance of the Bosphorus Suspension Bridge in the 40th Year

Replacement of Old Oblique Hanger Ropes with New Vertical Hangers

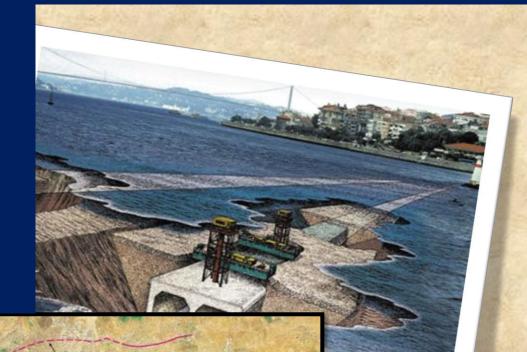

> 4 New Viscous Dampers

Retrofitting Works MECIDIYEKÖY VIADUCT(IN ISTANBUL-1973) L=860M

Before Retrofitting

Material Characteristics General Concrete Quality: C30 Foundation: C25

After Retrofitting


Kursun Cekirdekli Kaucuk mesnet

ORTAKÖY – V408 (RETROFITTING THE VIADUCT PIER)

Immersed Tube Tunnel in Bosporus The minimum performance requirements

Damage should be repaired easily and would not result in a loss of function or lives;
The tunnel would remain watertight;
The facility would remain operational following the earthquake

The Marmaray Immersed Tube Tunnel (Opened in 29th of October 2013)

THE CONTEMPORARY, SAFE AND MODERN RAILWAY SYSTEM THAT IS AIMED WITH THE MARMARAY PROJECT

Following the earthquake require not more than a few days for inspection and adjustment of the rail alignment

Repair work could be performed with minimum disruption to the operation of the facility

(Osman GAZİ) İZMİT BAY SUSPENSION BRIDGE

- The Izmit Bay Suspension Bridge is completed as world's fourth longest suspension bridge, by length of central span.
- The total length of the bridge is 3.3 kilometers, with a main span of 1580 meters

Newest Suspension Bridge Closest to North Anatolian Fault

Suspension Bridge Earthquake Acceleration Spectra

Comparison with the 1999 Marmara Earthquake Data

A Road State State	Seismic Event	Return Period	Service P. Level	Damage Level No Damage Repairable Damage				
Economic Life-100	Functional (FEE)	150 Year (50% Pro.)	Instant Access					
Year	Safety (SEE)	1000 Year (10%Pro.)	Limited Access					
3 5 % Damping	Non- Collapse (NCE)	2475 Year (4%Pro.)	I	No Collapse				
2.5 2.5 1.5 1.5	SEE	CE						
1999 Marmara EQMax FEE								
0 0,01 0,01 0,1	ra EQMedian	1		10				

A Brief History of Earthquake Codes Enforced in Turkey

Some Remarks:

•It is important to note that the Turkish Seismic Design Code has been upgraded in certain time intervals, between 1940 and 2018.

•Only a small portion of the existing buildings has been constructed in accordance with Seismic Design Code until the 1999 Kocaeli Earthquake which has been a milestone in terms of public awareness.

•1999 Kocaeli Earthquake has deeply affected public and constructors in terms of potential threat to human lives and economy.

The experienced disaster has been far more effective on the awareness of the public and the attitude of constructors than the revisions in the seismic design codes.

Economic statistics for the last sixty years show that direct and indirect economic losses engendered by natural disasters account for 3 percent of the country's GDP. Forecasts exist that tell us that in a major earthquake in a major city this ratio may well be doubled.

Last Remarks

Some of the natural disasters, just like hurricanes and floods, can be watched and predicted.

•Unfortunately, no one can predict the magnitude of the earthquake on which day and at what time.

What we need to do is to prepare and plan to minimize the effects of earthquakes.

•Our goal should be to achieve a reliable reconstruction of our country.

 Turkey or in any corner of the world, lost all lives, all the structures for migration, we have to ask this question: WHAT WAS WRONG?

References

Silva Büyükaşık,pp.1-6; Muzaffer İpek,pp.7-12; Haluk Eyidoğan,pp.13-16; Zeki Hasgür, pp.17- 26, "Contribution of japanese Academicians Formerly Visiting ITU"; First Collaborative Symposium of Türk-Japan Civil Engineers, Proc.Ed. B.Taşkın&Z.Hasgür, 5th June 2008.

Zeki Hasgür, Ömer Aydan, "Liquefaction, Lateral Spreading, Slope and Embankment Failures During The March 13 Earthquake of Erzincan, Turkey", Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June 1996.

Masanori Hamada; "Engineering for Earthquake Disaster Mitigation", Springer Series in Geomehanics and Geoenginnering, Springer, Japan 2014.

Öztürk Özgür, pp. 125-132; "Marmaray Project (BCI)-Immersed Tunel, Other Tunels and Stations," First Collaborative Symposium of Türk-Japan Civil Engineers, Proc.Ed., B.Taşkın&Z.Hasgür, 5th June 2008.

İsmail Kartal, Erdoğan Dedeoğlu, pp.42-52; "İzmit Bay Suspension Bridge- Design Overview of the Project", The 3rd Joint Symposium of Türk-Japan Civil Engineers, Proc.Ed., B.Taşkın&Ülgen M. Tuğsal, 17th May 2013. **Masanori Hamada, pp.1-7**; "Lessons Lerned From the Great East Japan Disaster & Strategies

Agains Future Earthquakes", The 3rd Joint Symposium of Türk-Japan Civil Engineers, Proc.Ed., B.Taşkın&Ülgen M. Tuğsal, 17th May 2013.