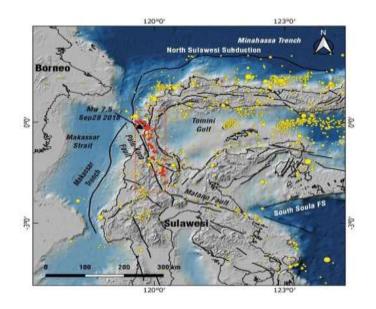

Improving the Understanding of Tsunami Risk

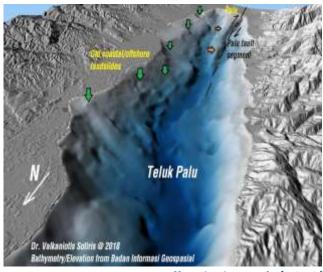
Teuku Alvisyahrin

TDMRC – Graduate Program in Disaster Science Syiah Kuala University, Banda Aceh, Indonesia

Online Tsunami Seminar
Asian Disaster Reduction Center – Kobe - JAPAN – 15 June 2022

Highly Dynamic Pacific Ring-of-Fire




Source: Mancini (2021)

Selected Global Tsunami Events

Tsunami Event	Date	$M_{\rm w}$	Mechanism	H-Losses	TEWS
I.O./Sumatra, INA	26 Dec '04	9.3	Subduct. Zone tectonic	200,000+	No
Sendai, JAPAN	11 Mar '11	9.0	Subduct. Zone Tectonic	20,000	Yes
Palu, Sulawesi, INA	28 Sep '18	7.5	Non-Tectonic -Landslide	4,340	No
Sunda Strait, INA	22 Dec '18	-	Volcanic erupt./flank collapse	e 430+	No
TONGA, S. Pacific	15 Jan '22	-	Volcanic eruption-Explosion	6	VEWS

Palu, SEP 2018 M7.5 Landslide-Induced Tsunami

Source: Valkaniotis et al. (2018)

Palu, SEP 2018 M7.5 Landslide-Induced Tsunami Impact

Area potentially affected by

heavy ash fall and possibly

affected by incandescent ejected

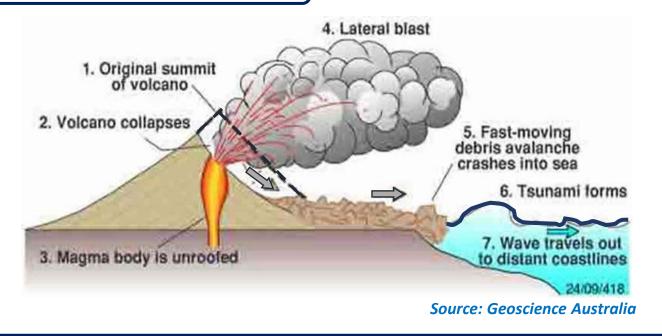
rock fragments by pebble size.

Indonesia | Anak Krakatau volcanic eruption

12.5

25

BMKG: Indonesian Agency for Meterology, Climatology and Geophysics


²Connection via Telkomsel GSM link from a new tower installed on Sebesi Island

Tjiteureup

BIG: Indonesian Geospatial Information Agency

With satellite communication by BMKG/BAKTI

Volcanic Eruption-Induced Tsunami

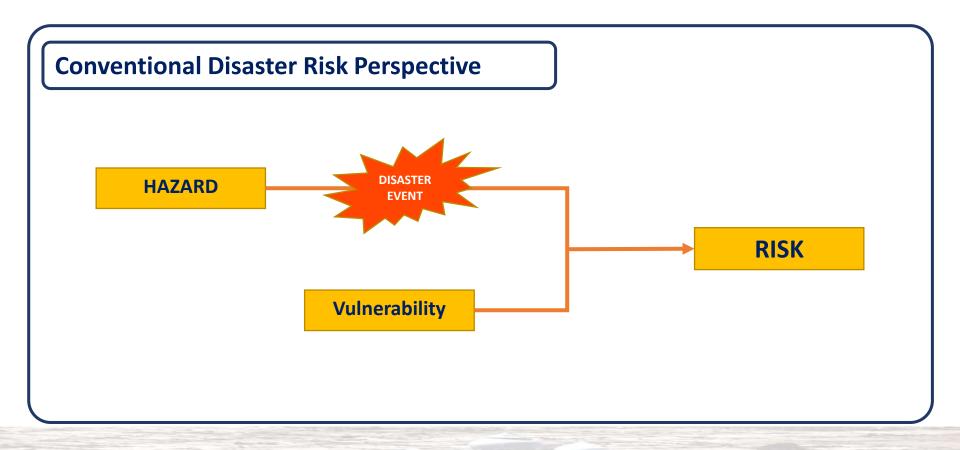
Sunda Strait DEC 2018 Volcanic Eruption-Induced Tsunami Impact

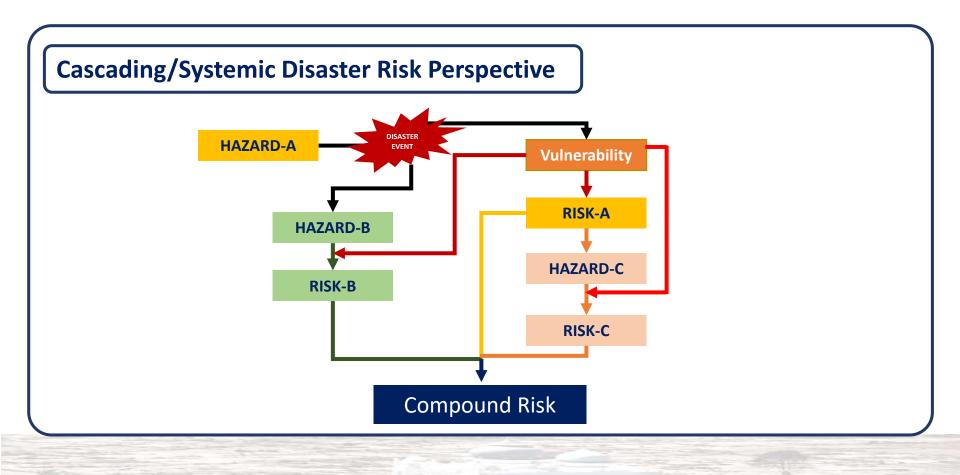
Source: Tribunnews (2019)

Tsunami Risk and its Understanding

Hazard perspective:

- Source mechanism: Tectonic, non-tectonic: Volcanic eruption, landslide
- Cascading multi hazards: fire, explosion, epidemy, etc.


Vulnerability perspective:


Multi hazard-specific structures and infrastructure, socio-environment

Capacity perspective:

Tsunami risk governance

Non-tectonic Tsunami Disaster Mitigation Effort in Indonesia

Strategy	Stakeholder	Status	
Structural	Policy: TEWS	Progress made – IDSL	
Non-structural	Policy : Advocacy, Preparedness, Risk assessment, Regulations, Instruments, Spatial planning	Very early phase	
	Community: Awareness, Education	Yet to Start	

IDSL - Tsunami Early Warning System

Inexpensive Device for Sea Level Measurement

- Developed at the Joint Research Center of EC.
- Installed in Indonesia in collaboration with Ministry of Fisheries and Marine Affairs, BMKG, Geospatial Information Agency, Indonesian Tsunami Experts Association, UNESCO/IOC, etc.
- Cheap, very effective, short latency time, robust, reliable, relatively easy maintenance.

IDSL Units Installed in Indonesia

Ministry of Fisheries and Marine Affairs, Indonesia

Selected Research on Recent Non-Tectonic Tsunamis in Indonesia

Authors	Date	Location	Topic	Major Finding
Ye et al.	2020	Sunda Str.	Volcanic landslide	Flank collapse of A. Krakatau
Widiyanto et al.	2019	Palu	Post-tsunami survey	Tsunami arrived in 3-8 min.
Husrin et al.	2020	Palu	Tsunami simulation	Palu Bay hydrodynamics is important for simulation
Haridhi et al.	2022	N. Sumatra	Submarine landslide	Sumatran fault EQ could cause submarine landslides

Efforts Needed to Improve Tsunami Risk Mitigation in Indonesia

- Comprehensive tectonic and non-tectonic source mechanism mapping
- Installation of seismometers to monitor submarine volcanic activity
- 3. Installation of IDSL units in areas prone to near-field tsunamis
- Integration of disaster risk reduction into coastal spatial planning
- 5. Assessment of coastal and submarine landslide dynamics
- Strengthening the coordination for End-to-End TEWS dissemination
- 7. Community awareness raising for non-tectonic tsunamis
- 8. Drafting of regulations and SOPs for non-tectonic tsunami risk mitigation

THANK YOU

