2. Highlights of FY2024

Among the highlights of Fiscal Year 2024 include the organization of the Asian Conference on Disaster Reduction (ACDR2024) in Hanoi, Viet Nam, the analysis of the 2025 Myanmar Earthquake, the drafting of the ASEAN Agreement on Disaster Management and Emergency Response (AADMER) Work Programme 2026–2030, and the 20th commemoration of the Indian Ocean Tsunami.

2.1 Activities in Figures

At a glance, Figure 2.1 shows the ADRC milestones of FY2024 along its three activity areas: 1) information sharing; 2) human resource development; and 3) international cooperation.

ADRC MILESTONES OF FISCAL YEAR 2024

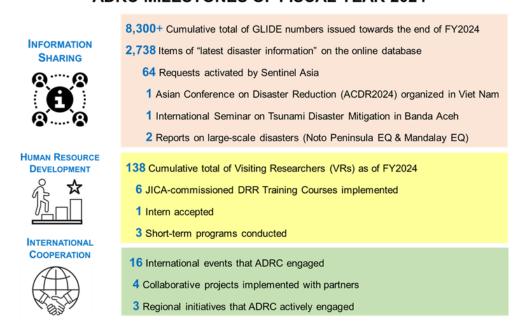


Figure 2.1 Highlights of ADRC Activities in FY2024

2.2 Asian Conference on Disaster Reduction 2024

Hosted by the Viet Nam Disaster and Dyke Management Authority (VDDMA), Ministry of Agriculture and Rural Development (MARD), and in cooperation with the Cabinet Office Government of Japan and the Asian Disaster Reduction Center (ADRC), the Asian Conference on Disaster Reduction (ACDR2024) was organized in Hanoi, Viet Nam on 12–13 November 2024. Adopting the theme, "Proactive Solutions and Anticipatory Actions for Sustainable Resilience to the Climate Crisis", ACDR2024 featured four sessions:

- 1) Roundtable on resilience to climate crisis
- 2) Thematic session on enhancing flood risk information
- 3) Thematic session on improving flood countermeasures
- 4) Special session on disasters and disaster management in Viet Nam

ACDR2024 gathered 80 onsite participants from member countries, representatives of international and regional organizations, private sectors, the academic and research institutes. Also, 62 participants including those from five member countries attended online.

Figure 2.2 ACDR2024 Group Photo

2.2.1 Opening Session

High-level officials from the Government of Viet Nam and from the Government of Japan, and the outgoing chairman of the ADRC delivered the opening speeches.

Through the Asian Conference on Disaster Reduction (ACDR), member countries could gain greater understanding of risk, learn new approaches to community resilience, and embrace latest technologies for DRR."

Mr Nguyen Hoang Hiep Vice Minister, Agriculture and Rural Development Government of Viet Nam

As major disasters have become more frequent, it is increasingly important to take steps for mitigation ensuring national resilience, providing residents with disaster risk information, improving living conditions in evacuations in the event of a disaster, and implementing Build Back Better initiatives."

Mr NUKINA Koji Assistant Vice Minister for Disaster Management Government of Japan

All the sessions in the ACDR2024 will bring valuable insights and information on strengthening resilience to member countries."

Prof. HAMADA Masanori Chairman Asian Disaster Reduction Center

2.2.2 Roundtable Session

Fifteen member countries, namely: Brunei Darussalam, Cambodia, Japan, Republic of Korea, Lao PDR, Malaysia, Mongolia, Myanmar, Pakistan, Papua New Guinea, Philippines, Singapore, Sri Lanka, Thailand, and Viet Nam delivered an official statement at the roundtable on "Challenges and Progress in Implementing the Actions Related to Resilience to Climate Crisis in the Sendai Framework for Disaster Risk Reduction", which was moderated by Ms Doan Thi Tuyet Nga (Director of International Cooperation and Science Technology Department, VDDMA). Overall, the statements highlighted common strategies on strengthening resilience to climate crisis.

Figure 2.3 Government officials and representative who delivered statements at the Roundtable Session

Enhance the support mechanisms for climate actions. This includes: 1) ensuring that plans, e.g., DRR Plans, Development Plans, and National Action Plan are aligned with the Sendai Framework for Disaster Risk Reduction; 2) embracing digital transformation in DRR and Climate Change Adaptation (CCA), such as maintaining a climate-related disaster database systems; 3) widening the platforms for knowledge exchange and information-sharing; 4) promoting risk-informed development based on reliable assessments; and 5) Adopting All -of-Society approach in all aspects of DRR-CCA efforts to ensure that "no one is left behind".

Bolster financing options for mitigation of climate crises. This includes: 1) impact-based forecasting and anticipatory actions; 2) parametric insurance for public assets; 3) catastrophic risk insurance pool for local governments and small businesses; 4) multi-national risk pooling facilities, e.g., Disaster Risk Insurance Facility; and 5) public-private partnerships.

Embrace science and technology to strengthen climate resilience. This includes: 1) adopting science-based and risk-informed approaches to development; 2) exploring the utilization of AI-driven disaster risk management systems; 3) availing satellite services and space-based technologies for observing, monitoring, and disseminating information on disaster risk; and 4) integrating scientific and indigenous/traditional knowledge and practices on DRR, ensuring that communities can adapt to new technologies.

2.2.3 Session 1: Enhancing Flood and Flash Flood Risk Information

Moderated by Prof. MIURA Fusanori (Yamaguchi University, Japan), this session showcased the latest technologies that could help enhance flood and flash flood risk information.

Prof. Demetrios Eliades KIOS Center of Excellence University of Cyprus

Prof. SHUMUTA Koji Center for Asian Studies Kanagawa University, Japan

Prof. MIURA FusanoriSpace Data Utilization Promotion Yamaguchi University, Japan

Dr Masita Dwi Mandini Manessa University of Indonesia

Mr Nguyen Xuan Sang Deputy Director, ARDD Yen Bai Province, Viet Nam

Mr Hoang Minh Tuan Head, DMA-ARDD Cao Bang Province, Viet Nam

Figure 2.4 Speakers of Thematic Session 1

Associate Prof. Demetrios Eliades (KIOS Center of Excellence, University of Cyprus) presented examples of Alenabled systems for monitoring and forecasting risk that are useful for flood modeling and flood/water quality risk assessment. Additionally, he presented how Low-Power Wide Area Network (LPWAN) communication technology can be useful in disseminating flood risk information, particularly in areas that have limited access to cellular networks or Wi-Fi. Prof. SHUMUTA Koji (Center for Asian Studies, Kanagawa University, Japan) introduced sensing technologies for disaster response and recovery. For instance, in risk assessment management system for power lifeline (RAMP), various sensors are being utilized to improve the performance of temporal and spatial interpolation. Prof. MIURA Fusanori (Yamaguchi University, Japan) outlined the current situation of utilizing satellite data for disaster management. He said that there are various forms of cooperation in using satellite data. In the region, there is Sentinel Asia, and in Japan, there is a Consortium for Satellite Earth Observation (CONSEO). However, in delivering the service, publicly-owned and privately-owned satellites work independently. As shown in the result of disaster prevention drill, independently-provided satellite service is less effective. To make it more effective, a Satellite One-stop System is introduced to optimize the role of satellite in disaster management. Dr Masita Dwi Mandini Manessa (Lecturer, Geography Department, University of Indonesia) highlighted the role of spatial machine learning in predicting landslides and floods in agricultural systems of Magelang Regency in Indonesia. By using spatial machine learning, it is predicted that approximately 38% of high-productive agricultural lands will be exposed to high flood risk. Mr Nguyen Xuan Sang (Deputy Director of Agriculture and Rural Development Department, Yen Bai Province, Viet Nam) reported the impacts of landslides in Yen Bai Province caused by Typhoon Yagi. Lessons from that experience include the need for

improving the technologies for forecasting and early warning systems for landslides. Mr Hoang Minh Tuan (Head of Disaster Management Administration, Irrigation Sub-Department, Agriculture and Rural Development Department, Cao Bang Province, Viet Nam) shared the lessons from responding to Typhoon Yagi in Cao Bang Province. Among these are the need for better technologies for search and rescue operations, including the use of drones.

2.2.4 Session 2: Improving Flood Countermeasures Based on Analyses of Future Risk for Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA)

Dr Nguyen Nghia Hung (Deputy Director of Southern Institute for Water Resources Research, Viet Nam) moderated this session that focuses on "Improving Flood Countermeasures Based on Analyses of Future Risk for Disaster Risk Reduction and Climate Change Adaptation". Speakers on this session shared principles and approaches in improving flood countermeasures for DRR-CCA.

Dr Nguyen Nghia Hung Deputy Director, Southern Institute for Water Resources, Viet Nam

Mr SUZUKI Takashi Advisor for DRM JICA Expert at VDDMA

Dr ONO Takahiro General Manager Tokio Marine Holdings

Mr Junha Kim Head of Team, MOIS Republic of Korea

Ms Angsumalin Angsusingha Disaster Management Center DDPM, Thailand

Mr Le Anh Dung Director, Irrigation Sub-Dept Ha Giang Province, Viet Nam

Figure 2.5 Speakers of Thematic Session 2

Mr SUZUKI Takashi (Advisor for Disaster Risk Management [JICA Expert] at VDDMA) emphasized the concept of "kaizen", a Japanese term for continuous learning and improvement (e.g., failure, science, and world). Applying the concept of "kaizen" helps improve flood countermeasures, such as through scientific river improvement and integrated river basin management. Dr ONO Takahiro (Special Appointed Professor, Tohoku University/General Manager, Tokio Marine Holdings) highlighted the benefits of "ex-ante investment" or pre-investment in disaster risk reduction. Initiatives such as the Business Continuity Plan (BCP) and the Disaster Mitigation Action Plan (Timeline) are examples of ex-ante investment that reduces post-event economic contractions and speed-up post-disaster recovery. Mr Junha Kim (Head of Team, Ministry of the Interior and Safety, Republic of Korea) reported that the implementation of flood countermeasures in the Republic of Korea include: 1) proactive disaster preparedness by ensuring the readiness of the institution in implementing preemptive evacuation to reduce casualties; and 2) collaborative disaster management by engaging all stakeholders in disaster governance. Ms Angsumalin Angsusingha (Disaster Management Expert, Disaster

Management Center, DDPM, Thailand) shared a case study of flooding situation in Northern Thailand, and how the DDPM had addressed the challenges. She presented the Solution Framework, a community-centered approach, that DDPM applied in addressing flooding situations. Basically, the Solution Framework embraces the community-based disaster risk management (CBDRM) approach. Mr Le Anh Dung (Director of Irrigation Sub-Department, Agriculture and Rural Development Department, Ha Giang Province, Viet Nam) shared the damage caused by Typhoon Yagi in Ha Giang Province. He reported that the impacts were severe, yet the external support for emergency response was limited. To address this challenge, Ha Giang Province will continue to train community-based first-responders to optimize local capacities.

2.2.5 Special Session on Disasters and Disaster Management in Viet Nam

This special session was moderated by Mr SUZUKI Takashi (Advisor for Disaster Risk Management [JICA Expert] at VDDMA) to provide an overview of the disasters and disaster management in Viet Nam. Highlighting floods, flash floods, and landslides in the context of Typhoon Yagi that impacted several provinces in Viet Nam in September 2024, this session showed examples of disaster management in the areas of preparedness, prevention and mitigation, response, and recovery. It also showed the diversity of disasters in Viet Nam as well as the future direction of ASEAN cooperation, as outlined by the Government of Viet Nam.

Figure 2.6 Speakers of the special session on disasters and disaster management in Viet Nam

Mr Nguyen Xuan Tung (Deputy Director, Department of Response and Recovery, VDDMA) reported the situation of flash floods and landslides in the northern mountainous region of Viet Nam in the past 10 years (2014–2024). On average, flash floods and landslides cause 62 deaths per year in the past decade, and mostly in the mountainous areas. To reduce future impacts, his recommendations include: strengthen communication systems, raise community awareness, build local capacity for response, detailed regional accurate forecasting, early warning system, and household-level disaster management planning.

Mr Quan Van Viet (Deputy Chief of Office of the Steering Committee for Disaster Prevention and Search and Rescue, Lao Cai Province) reported the impacts of Typhoon Yagi in Lao Cai Province, causing serious damage to people, property, infrastructure, and disrupting the social activities. To effectively address the impacts of

similar disaster in the future, he mentioned the following: making the infrastructure more resilient, improving the forecasting and early warning systems, and strengthening data collection and risk analysis.

Mr Luong Khac Kien (Division Head, Irrigation Sub-Department, Agriculture and Rural Development Department, Son La Province) introduced the pilot model for flash flood prevention in Son La Province under the technical cooperation between the Government of Japan and Viet Nam. The components of the pilot model, include: 1) early warning system, 2) resettlement and landuse, and 3) construction of Sabo Dam to prevent erosion and flash floods. Sabo Dam is being constructed in one of the planned 12 locations of Nam Pam River, Muong La District, Son La Province, and he hopes that necessary resources will be mobilized to complete the construction in other locations.

Mr Pham Quoc Hung (Director of Irrigation Sub-Department, Agriculture and Rural Development Department, Yen Bai Province) introduced the capacity building on landslide early warning that is being piloted in Tram Tau District, Yen Bai Province under the technical cooperation between the Government of Japan and Viet Nam. About 130 households living in the pilot area are oriented on the newly installed early warning systems. The system monitors movement of land mass and provides warning to the community. The data is also transmitted in real time to the office in Yen Bai Irrigation Sub-Department. This system is expected to contribute in increasing community resilience to landslide. Additionally, he mentioned the importance of risk assessment of wide area in Yen Bai Province.

Mr Doan Manh Phuong (Director of Irrigation Sub-Department, Agriculture and Rural Development Department, Quang Ninh Province) reported that Typhoon Yagi had severely impacted the agricultural production affecting the livelihoods of people in Quang Ninh Province. Among the actions to address the challenges, include support for: 1) school tuition of children and students, 2) needs of agricultural sector, 3) repair of damaged houses, 4) demolition of submerged fishing boats, and 5) developing sustainable aquaculture.

Dr Nguyen Nghia Hung (Deputy Director, Southern Institute for Water Resource Research) presented the challenges in addressing river bank and coastal erosion in the Mekong Delta. Among the causes and risks of river bank erosion are: 1) housing is too close river flow, 2) sand mining, 3) instability of river bank formed by sand and mixed clay, 4) surcharging or loading on river bank, and 5) fish ponds near the main river. Currently several scientific approaches are being conducted but comprehensive measures including environmentally friendly solutions should be discussed and taken to address such erosion, since they are critical issue in the Mekong Delta Region.

Mr Ngo Huu Huy (Centre of Policy and Technology disaster management, VDDMA) presented the Viet Nam Disaster Monitoring System (VNDMS), a system that supports disaster prevention and control (DPC) management through data integration and connectivity with various ministries, line agencies, organizations, and local authorities. It enables the analysis and visual display of information and data to provide disaster warnings for agencies, organizations, and the community. The system is developed, managed, and monitored 24/7 by the Centre of Policy and Technology of VDDMA to ensure stable and secure operations as well as timely response.

Ms Dam Thi Hoa (Deputy Director of International Cooperation and Science Technology Department, VDDMA) provided an overview of the Ha Long Ministerial Statement on the Strengthening of ASEAN Anticipatory Actions in Disaster Management to show Viet Nam's role in international cooperation for disaster risk reduction. The statement emphasized three building blocks for action: 1) Improve risk information, forecasting and early warning systems; 2) Enhance planning, operations, and delivery in delivering anticipatory actions in disaster

preparedness and response; and 3) Promote pre-arranged finance for a successful anticipatory action in disaster management.

2.2.6 Closing Session

Executive Director of ADRC, Director-General of VDDMA, Assistant Vice Minister for Disaster Management in Japan, and the new chairman of ADRC delivered the closing speeches.

ACDR2024 offered insights to strengthen resilience to climate crisis, such as enhancing the support mechanisms for climate actions, bolstering the financing options for climate change mitigation, and embracing climate science."

Mr SASAHARA Akio Executive Director Asian disaster Reduction Center

Due to close cooperation with ADRC, officials at VDDMA/MARD have greater opportunity to get involved in the international environment, including participation in capacity building programs and short-term training."

Mr Pham Duc Luna
Director-General VDDMA, MARD
Government of Viet Nam

ADRC is expected to take ever larger roles of promoting the Sendai Framework and hub of wisdoms in investment for disaster risk reduction."

Mr NUKINA Koji Assistant Vice Minister for Disaster Management Government of Japan

Various DRR measures are needed, not only for post-disaster response and recovery, but also, for disaster prevention and mitigation through investment and utilization of advance and effective ICT-based initiatives in anticipation of future disasters."

Prof. MIURA Fusanori Chairman Asian Disaster Reduction Center

2.3 Report on the 2025 Myanmar Earthquake

Following the strong earthquake of Mw 7.7 at a depth of 10 km occurred on 28 March at 06:20 UTC (12:50 local time) in Sagaing Region, Central Myanmar, ADRC immediately started compiling disaster information (see report). ADRC coordinated the issuance of GLIDE number and facilitated the request for earth observation satellite images.

2.3.1 Issuance of GLIDE Number

When the GLIDE number for the event <u>EQ-2025-000043-MMR</u> was issued through ADRC, relevant institutions (e.g., <u>ReliefWeb</u>, <u>GDACS</u>, and <u>Sentinel Asia</u>) used it as the "disaster ID of the event" to facilitate integration of information. Initial data indicated that an aftershock of Mw 5.5 at a depth of 7.7 km occurred on 13 April at 02:24 UTC (08:54 local time) in the Mandalay region of central Myanmar. The epicenter was located about 34 km north -northeast of Meiktila City and 78 km south of Mandalay City. The United States Geological Survey (USGS) PAGER estimated that up to 86,000 people were exposed to severe shaking while 631,000 were exposed to strong and very strong shaking. As of 12 April, information from the AHA Centre indicate that the death toll continued to rise—recording 3,648 fatalities, 134 missing people, and 4,817 injured people. Approximately 200,000 were displaced, of whom 42,118 were in 134 temporary shelters.

2.3.2 Initial Assessments

On 7 May 2025, ADRC shared the initial assessment of damage situation (Figure 2.7)

Damage Situation (as of 18:00 on 07 MAY 2025)

Damage in Myanmar, Thailand, China etc.

		Myanmar	Thailand	China etc.
Killed		3,787	95	
Missing		88		
Injured		5,106	37	
Affected People		499,123		
Evacuee		309,639		
Damaged Buildings	Houses	81,635 (11,918 totally damaged)	1,389	
	Buildings	5,488	39 *A high-rise building under construction collapsed	
	Government offices	6,856	83	
	Schools	2,642	129	
	Hospitals	594	168	
	Religious buildings	10,608		
	Pagodas/ Temples	6,033	91	
Damaged Infra- structure	Railways	38		
	Roads	403		
	Expressway	198		
Fire		occurred		
Lifeline Source		Widespread interruption of electricity and communication lines		
		AHA Centre https://ahacentre.org/situation-upc	DDPMhttps://www.disaster.go.th/contents/disaster_news late/	CEAhttps://www.cea.gov.cn/ce a/xwzx/fzjzyw/5807447/index. html

Figure 2.7 Damage assessment collected by ADRC as of 7 May 2025

It is expected that the number of deaths and injuries will rise when official data is available. This earthquake caused widespread destruction of infrastructure, including residential, governmental, and religious structures. Transboundary impacts were observed in Bangkok, Thailand, where a 33-story skyscraper collapsed, claiming

29 lives. This earthquake exposed the vulnerabilities in urban planning and disaster preparedness that are exacerbated by rapid urbanization and inadequate seismic codes.

2.3.3 Satellite Imageries

As co-chair of <u>Sentinel Asia</u>, ADRC facilitated the request for earth observation satellite (EOS) imageries of the earthquake-impacted areas of Myanmar. One of the products is shown on Figure 2.8.



Figure 2.8 InSAR (Interferometric SAR) analysis of ALOS-2 satellite imagery

Earth Observatory of Singapore - Remote Sensing Lab (EOS-RS) created an Interferometric Synthetic Aperture Radar (InSAR) map that shows the surface displacement (wrapped interferogram) of the Mw 7.7 earthquake and its aftershocks along the Sagaing Fault. It is noted that Sagaing Fault marks the boundary between the Indian Plate and the Eurasian Plate. It is a strike-slip fault similar to the San Andreas Fault in the United States. Complementing the imageries are various datasets, including the mapping of the <u>earthquakes that occurred in the last 100 years</u> in Myanmar compiled by the Myanmar Information Management Unit (MIMU).

2.4 Development of AADMER Work Programme 2026–2030

ASEAN Agreement on Disaster Management and Emergency Response (AADMER), signed on 26 July 2005 and enforced on 24 December 2009, is a legally binding document that guides regional cooperation in disaster management and emergency response. Since its enforcement, three AADMER Work Programmes (AWP) have been developed by the ASEAN Committee on Disaster Management (ACDM): AWP 2010–2015, AWP 2016–2020, and AWP 2021–2025. For the next iteration, i.e., AWP 2026–2030, the ASEAN Secretariat appointed ADRC to facilitate its development starting January 2025.

2.4.1 Background

In facilitating the development of the AWP 2026–2030, ADRC considered the lessons from the 20 years of implementing AADMER, the outcomes of the ASEAN Vision 2025 on Disaster Management, the operations of the ASEAN Coordinating Centre for Humanitarian Assistance on Disaster Management (AHA Centre), and the mechanisms and broader partnerships for ASEAN disaster management. ADRC also aligned the development of AWP 2026–2030 with the ASEAN 2045: Our Shared Future, the ASEAN Socio-Cultural Community (ASCC) Strategic Plan, and other relevant ASEAN strategic documents and global frameworks.

2.4.2 Priority Programmes

Building on the achievements and lessons from previous AWPs, ADRC noted that the next iteration should maintain the same priority programmes for continuity as well as to effectively address the multiple risks from climate changes and natural hazards. Like the previous iteration, the AWP 2026–2030 will consist of five Priority Programmes (PPs) with corresponding outcomes and outputs (Figure 2.9) that will contribute to achieving the vision, "a region of disaster-resilient nations, where disaster losses in lives, social, and environmental assets are substantially reduced through concerted national efforts, intensified regional and global cooperation and leadership, in pursuit of safer communities and sustainable resilience."

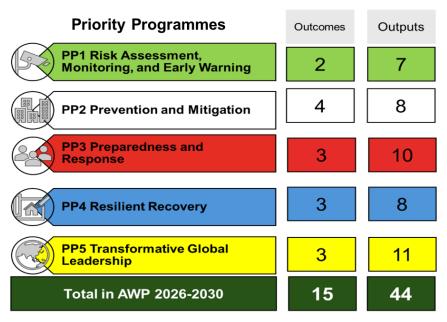


Figure 2.9 Priority Programmes of AWP 2026-2030

PP1: Risk Assessment, Monitoring, and Early Warning is aimed at advancing a technically robust risk assessment and monitoring system while accelerating efforts to achieve multi-hazards early warning systems for all.

PP2: Prevention and Mitigation is aimed at strengthening risk governance for Disaster Risk Reduction (DRR) and Climate Change Adaptation (CCA), enhancing localization and whole-of-society approaches, and strengthening protection, gender, and inclusion (PGI), resilient economy and risk financing, and resilient human settlement.

PP3: Preparedness and Response is aimed at sustaining and further strengthening the utilization of tools and mechanisms for preparedness and response within the region and set new heights for their utilization, including readiness to respond to disasters beyond the region.

PP4: Resilient Recovery is aimed at achieving an inclusive and sustainable disaster recovery by strengthening capacity for recovery needs assessment, enhancing support for recovery planning, and developing a regional recovery assistance mechanism for large-scale disasters and ensuring multi-stakeholder engagement to achieve "build back better".

PP5: Global Leadership is aimed at transforming the approach to global leadership in DRR by producing knowledge products that elevate the quality of the ASEAN regional knowledge hub in disaster management, ensuring coherent capacity building and disaster management professionalization, and continuous global thought leadership of ASEAN in influencing the global DRR policymaking and practicing, including the post-Sendai Framework for Disaster Risk Reduction processes.

2.4.3 Timeline

AWP 2026–2030 is expected to be adopted and launched at the 13th ASEAN Ministerial Meeting on Disaster Management (AMMDM), 13–17 October 2025 in Cambodia and to be noted by the Leaders at the 47th ASEAN Summit on 26 October 2025.

2.5 20th Commemoration of the Indian Ocean Tsunami

In line with the 20th Commemoration of the Indian Ocean Tsunami of 2004, ADRC teamed up with the Tsunami Disaster and Mitigation Research Center of the Universitas Syiah Kuala (TDMRC/USK) and BAPPEDA Aceh in organizing a series of activities in Banda Aceh, Indonesia.

2.5.1 International Seminar on Tsunami Disaster Mitigation

In this event, Dr MIFUNE Yasumichi and Dr Gerald Potutan (both from ADRC) served as keynote speakers. Dr Mifune shared insights on recovery from tsunami in the context of the Great East Japan Earthquake while Dr Potutan showed some practical examples from Japan on how to escape from tsunami and mitigate its impact on life and property.

Figure 2.10 Speakers of the International Seminar on Tsunami Disaster Mitigation

2.5.2 Field Visits

ADRC visited the following: 1) impacted areas of 2004 Aceh Tsunami, 2) Aceh Tsunami Museum, and 3) tsunami research facilities at TDMRC/USK.

(1) Impacted areas

Alue Naga, Tibang, Lamgugob, Rukoh, and Lampulo are sites in Banda Aceh located near the coast.

While construction of houses near the coast has been restricted, many new houses have been built. No vertical buildings or tsunami towers for evacuation could be found in the area (Figure 2.11).

Figure 2.11 New houses built near the coast in Banda Aceh

Banda Aceh's fishing industry is one of the reasons why new houses are being built, and for the same reason, even those who relocated after the 2004 Indian Ocean Tsunami have returned to the area for livelihoods.

Figure 2.12 Boats of diverse sizes in Banda Aceh indicating a flourishing fishing industry

(2) Aceh Tsunami Museum

Aceh Tsunami Museum features movie halls and thematic exhibits. The photos below show a glimpse of the museum's offerings.

Figure 2.13 Tsunami simulation screen (left) and "Bridge of Peace" following tsunami recovery (right)

(3) Tsunami Research Facilities at TDMRC

TDMRC/USK is in possession of recent state-of-the-art facilities for tsunami disaster mitigation research, such as those shown in Figure 2.14.

Figure 2.14 Real-time earthquake observatory (top left), tsunami modelling facility (bottom left), and seismic shaking table facility (right)

2.5.3 Interviews

ADRC also conducted separate interviews with Dr H.T. Ahmad Dadek, Head of BAPPEDA Aceh (a provincial branch of the Ministry of National Development Planning, BAPPENAS) and M. Syahputra Azwar, Head of Aceh Tsunami Museum to learn more about the lessons from tsunami.

Figure 2.15 Interview at BAPPEDA Aceh (left) and interview at Aceh Tsunami Museum (right)

2.5.4 International Seminar on Tsunami DRR-related Policies

Upon joint invitation by BAPPEDA and TDMRC, members of the ADRC team served as speakers to the *Seminar on Disaster Risk Reduction and Environmental Policies in Japan and Indonesia*, which was held on 6 November 2024. Speakers from ADRC shared the disaster management systems in Japan, highlighting key DRR policies and practices.

Figure 2.16 Participants of the International Seminar at BAPPEDA